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Recent studies on complex systems have shown that the synchronization of oscillators, including neuronal
ones, is faster, stronger, and more efficient in small-world networks than in regular or random networks. We
show that the functional structures in the brain can be self-organized to both small-world and scale-free
networks by synaptic reorganization via spike timing dependent synaptic plasticity instead of conventional
Hebbian learning rules. We show that the balance between the excitatory and the inhibitory synaptic inputs is
critical in the formation of the functional structure, which is found to lie in a self-organized critical state.
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The brain is one of the most challenging complex sys-
tems. Massively interconnected to one another, the neurons
respond to external stimuli in a correlated and highly com-
plex manner in order to process information. Understanding
the neural complexity requires understanding the network
structure on which the functional self-organization of neural
firing activities are supported.

Recent studies on diverse complex networks describe real
networks by simply defining a set of nodes and connections
between them. Examples range over social, information,
technological, and biological networks �1�. They lie between
regular and fully random networks. A wide variety of such
systems are scale-free with a power-law connectivity distri-
bution, and their topology and evolution are governed by a
common mechanism such as preferential attachment and
growth �1–4�.

The topological structure of simple nervous systems, for
example, in Caenorhabditis elegans has been proven to be an
inhomogeneous small-world network �5�. However, in the
brain, the functional structure is more important as the direct
carrier of the neuronal information in the form of spikes and
synaptic conductances. Moreover, it changes adaptively due
to the inputs from external stimuli and the internal dynamics
of neurons, which in turn affect the neural responses. This
feedback process of synaptic plasticity is believed to be
closely linked to the mechanisms for learning and memory in
the brain. Recently, spike timing dependent plasticity
�STDP� has been observed experimentally in various brain
regions, such as neocortical slices �6�, hippocampal slices �7�
and cell cultures �8�, and the ELL �electrosensory lateral line
lobe� of the electric fish �9�. That is, long term synaptic
modifications arise from repeated pairings of presynaptic and
postsynaptic action potentials, the sign and the degree of
which depend on their relative timing. For example, in the
hippocampal CA3 region and neocortical slices, STDP
strengthens a synapse if the presynaptic spike is followed by
postsynaptic action potentials within about 50 ms and weak-
ens it if the presynaptic action potential follows postsynaptic
spikes.

In this paper, we report that STDP can reorganize a glo-
bally connected neural network spontaneously into a func-
tional network, which is both small-world and scale-free.
This functional structure is formed by the activity dependent
synaptic plasticity depending on the spatiotemporal dynam-
ics of the neurons rather than a commonly used explicit pref-
erential attachment rule. We find that the functional complex
network arises when the excitatory and inhibitory connection
strengths between neurons are balanced. The neuronal activi-
ties in this small-world, scale-free neural functional network
are found to lie in a self-organized critical state as in the case
of sandpile and forest fire models �10�. The neuronal oscil-
lators in the functionally organized structure show fast syn-
chronous responses to external stimuli, making the neural
network more reliable in information transformation and
stable from epileptic overexcitation. Our results are quite ro-
bust and general, and hold for a wide class of neuron models,
including the Hodgkin-Huxley �HH� model, in a wide range
of control parameters, such as the strength of the external
stimulus, and parameters related to STDP, independent of
initial conditions.

The model neuron used is the FitzHugh-Nagumo �FHN�
model �11�, which is a two dimensional relaxation oscillator
with two time scales but contains the essential ingredients of
nervous excitation and fast action potential generation fol-
lowed by a slow refractory period

�v̇ = Iion + Isyn + Iext,

ẇ = v − w − b ,

Iion = v�v − a��1 − v� − w , �1�
where, with ��1, v is a fast voltagelike variable, w a slow
recovery variable, Iion the ionic current through the mem-
brane with cubic nonlinearity, and Iext the external current
stimulus. Neurons are coupled through synapses, and, if a
presynaptic neuron makes an action potential, it generates
synaptic currents in the postsynaptic neurons. The synaptic
current input to the ith neuron is the sum of excitatory and
inhibitory currents from pre-synaptic neurons

Isyn�t� = �
j�i

�gij�t��V − vi�t�� + ḡij�t��V̄ − vi�t��� , �2�*Electronic address: shine@postech.ac.kr
†Electronic address: swan@postech.ac.kr
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where gij �ḡij� is the excitatory �inhibitory� synaptic conduc-

tance from the jth neuron to the ith neuron and V �V̄� the
excitatory �inhibitory� synaptic reversal potential, respec-
tively. The synaptic conductances decay exponentially in the
absence of synaptic stimulus from presynaptic neuron

�syn
dgij

dt
= − gij and �̄syn

dḡij

dt
= − ḡij . �3�

If the jth presynaptic neuron makes an action potential at
time t*, it increases the post-synaptic conductances by the
amount of the peak conductances at time t* normalized by
the number of neurons, gij→gij +Gij�t*� / �N−1� and

ḡij→ ḡij + Ḡij�t*� / �N−1�. Gij�t� �Ḡij�t�� is the maximal exci-
tatory �inhibitory� conductance from the jth to the ith neuron
generated by one action potential at time t, which can be
regarded as the synaptic coupling strength between two neu-
rons and modified by STDP.

In our STDP neural network model, we assume that in-
hibitory synaptic coupling strengths remain constant �8�,
Ḡij�t�=Ginh, while excitatory synaptic strengths change mul-
tiplicatively at every firing event �12–14�:

�Gij = GijW��t� . �4�

The amount of the synaptic modification by STDP depending
on the time difference between presynaptic and postsynaptic
spikes, �t= tpost− tpre, is modeled by the STDP modification
function

W��t� = �A+exp�− �t/�+� if �t � 0,

− A−exp��t/�−� if �t � 0
�5�

and W��t=0�=0. The parameters �± determine the temporal
window of the spike intervals, and A± determine the maxi-
mum amount of synaptic modification. It has been shown
experimentally that in most situations, A+�A−, �+��−, and
the integral of the function W is usually negative �14�. Here,
the parameter values are chosen to be A+=0.01, A−=0.006,
�+=1.0, and �−=2.0. It is assumed that 0�Gij �Gmax and if
Gij increases over the maximal value, Gij is set to Gmax.
Other parameters are set to a=0.5, b=0.12, �=0.005,

V=0.7, V̄=0.0, and �syn= �̄syn=0.2.
We start with a globally coupled network with 1000 neu-

rons and random initial coupling strengths, 0�Gij �Gmax,
and investigate how the functional structure develops spon-
taneously in time. We apply external dc current, Iext=0.2,
which is suprathreshold stimulus for spontaneous generation
of action potentials. After a period of relaxation by STDP,
some population of synapses are strengthened to the maxi-
mum conductance Gmax while the others are weakened to
near zero. This is similar to the bimodal distribution in the
case of the balanced excitation of synapses from many inputs
to a single neuron �15�. As a result, even if the neurons are
morphologically connected all-to-all by synapses, their func-

FIG. 1. �a� Connection probability of the STDP network 	k /N

in the range between 0.03 �dark� and 0.6 �light�, �b� phase coher-
ence 	 between 0.4 �dark� and 1.0 �light�, and �c� the ratio of the
clustering coefficients between our model and the random network
with the same connection probability C /Crand between 0.5 �light�
and 7.5 �dark� in the parameter space of Gmax and Ginh in log-log
scale. The results are averaged over 30 different initial conditions.

FIG. 2. Log-log plots of degree distributions of the functional
STDP network for the optimal synaptic couplings. �a� In-degree
probability distribution and �b� out-degree probability distribution
for N=1000 and N=10 000. The scaling exponents are 
in�1.7 and

out�1.5 in the intermediate k. The results are averaged over
100�40� runs with different initial conditions for N=1000 �10 000�.

CHANG-WOO SHIN AND SEUNGHWAN KIM PHYSICAL REVIEW E 74, 045101�R� �2006�

RAPID COMMUNICATIONS

045101-2



tional structure can be reorganized by STDP to a smaller
functional network involving only a small population of neu-
rons.

Each synapse is regarded as functionally connected if the
synaptic conductance is larger than a critical value Gij �Gc.
In Fig. 1�a�, the average connection probability, the ratio of
the number of strengthened synapses to the total number of
synapses, 	k /N
, is shown in the parameter space of Gmax

and Ginh. In this figure, there exists a region along the diag-
onal, where the connection probability is very small, and on
either side of this region the connection probability becomes
relatively large. The states of the STDP networks can be
classified as synchronized, clustering, and dispersed states.
To characterize the dynamical properties of the functional
network, we define the phase of a neuron at time t between
firing times piecewise linearly �16�:

��t� = 2�� t − tn
*

tn+1
* − tn

* + n , �6�

where tn
* is the nth firing time. The phase coherence 	 of

neurons is defined as

	 = max�� lim
T→

1

T
�

0

T 1

N − 1 �
j�k

N

eim�jk�t�dt��
m

, �7�

where � jk�t� is the difference between the instantaneous
phases of the jth and kth neurons at time t. Note that 	
saturates to 1 if the firing times of all neurons are coherent
with m clusters and 0 if they are random. The dependence of
the phase coherence 	 in Fig. 1�b� is similar to that of the
average connection probability in Fig. 1�a�. On the lower
side of the diagonal, where the excitatory input becomes
more dominant, all the neurons in the network fire synchro-
nously. On the other hand, when the inhibitory input domi-

nates the excitatory input, the clustering state is formed, in
which the neurons are decomposed into synchronized groups
of neurons that fire asynchronously. In the diagonal region,
the excitatory and inhibitory inputs are balanced, and the
firing pattern of the network widely is dispersed but not en-
tirely random.

To characterize the structural properties of the functional
STDP network, we calculate the clustering coefficient C the
fraction of connections that actually exist between neighbors
of each neurons with respect to all allowed connections, and
the average path length L the number of synaptic connections
in the shortest path between two neurons averaged over all
pairs of neurons. The phase diagram of the clustering coef-
ficient relative to that of the random network with the same
connection probability C /Crand in Fig. 1�c� is similar to those
for the average connection probability and the phase coher-
ence. In the middle of the diagonal region, the connection
probability is very small with 	k /N
�0.03, but there is one
spanning cluster involving almost all the neurons in the net-
work. The clustering coefficient for the functional STDP net-
work is large �C�0.23�, whereas for a random network
Crand�0.03. In this region, the average path length is L
�3.19, while for a random network, Lrand�2.03. These re-
sults show that the functional structure organized by STDP in
the case of balanced excitations has typical small-world char-
acteristics: its clustering coefficient is much larger than that
of the random network with the same connection probability
C�Crand and the average path length is similar to that of the
random network L�Lrand.

We also find that the degree distributions of the functional
STDP network are scale-free. Figure 2 shows that the degree
distributions for optimal synaptic coupling follow power-law
decays with exponentially decaying cutoffs for large k:
Pin�k��k−
in, and Pout�k��k−
out, where Pin and Pout are the
frequency distributions of nodes with the same number of
in-coming and out-going synaptic connections, respectively.

FIG. 3. �a� Distribution of the size of the change of the total
synaptic coupling strengths and �b� the power spectrum of the fluc-
tuation of the synaptic strengths in log-log scale showing power-law
decays with exponents 
s�2.5 and 
 f �2.0.

FIG. 4. Phase coherence 	 of the STDP network �solid lines�
and the random networks �dashed lines� when a suprathreshold ex-
ternal stimulus is subjected to all the neurons �a� and only half of
neurons �b�, with a random initial phase of the neurons.
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In the middle of the diagonal region in Fig. 1, the scaling
exponents are 
in�1.7 and 
out�1.5, and do not depend
much on the synaptic parameters Gmax and Ginh nor the size
of the network N, while the size of the scaling regions is
reduced when the synaptic parameters move away from the
optimal value. By STDP, due to the negative integral of the
STDP modification function �5�, the synapses between inco-
herently firing neurons decays, whereas in a group of coher-
ently spiking neurons, the synapses from neurons firing in
advance to the postsynaptic neurons can be strengthened, and
the synapses between the two neurons and their neighbors
also tend to be strengthened. In this synaptic reorganization
process, the more connections a neuron has, the higher prob-
ability of making new connections it has. This is effectively
the preferential attachment rule for our dynamical network.

After a period of relaxation, the system reaches a quasi-
steady state and the average global properties of the func-
tional STDP network, such as the clustering coefficient, the
average path length, and the degree distributions, remain
constant. However, the synaptic coupling strengths continue
to fluctuate, as the neurons under the suprathreshold stimulus
generate action potentials spontaneously. Figure 3�a� shows
that the frequency distribution of the synaptic modification
event sizes shows a power-law decay D�s��s−
s, with the
exponent 
s�2.5, where s is the total amount of the change
of the synaptic strengths in the network per unit time inter-
val. The power spectrum P�f� of the fluctuation s�t� has
peaks at the natural frequency of the FHN neuron and its
harmonics, but in the low frequency range it follows a
power-law decay P�f��1/ f
f, with the exponent 
 f �2.0.
This implies that the fluctuations are random with no time
correlations. These facts suggest that functional STDP net-
work lies in a self-organized critical state. In this critical
state, the phase differences between neurons change slightly
in time, as nonuniform excitatory �inhibitory� synaptic
stimuli tend to slightly enhance �delay� the phase of the post-
synaptic neurons. If a neuron overtakes its presynaptic part-
ner or, in other words, if there is a phase flip between the two
neurons, their synaptic conductances begin to change more
rapidly and reverse the direction of the synaptic interaction,
which may in turn induce larger changes in phase differences
between them and their neighbors. In this way, phase flips
and STDP events can propagate through the network in an
avalanchelike manner. The frequency distribution of the

number of phase flip events per unit time was also computed,
which follows a power-law decay D�p�� p−
p, with the ex-
ponent 
p�2.0.

Our results show that a neural network can be spontane-
ously organized by STDP to a small-world and scale-free
functional structure in a self-organized critical state. The bal-
ance between excitation and inhibition in the network dy-
namics is critical to the formation of the complex network
structure. Recent experimental studies using f-MRI �func-
tional magnetic resonance imaging� and MEG �magnetoen-
cephalography� in human brain sites also show that the func-
tional networks in the brain after thresholding are in fact
scale-free, small-world networks �17,18�. In a small-world
network, due to the large clustering and the short average
path length, faster and larger synchronization can be
achieved with only a small number of connections �19–21�.
We also find that, under a suprathreshold stimulus the STDP
network shows as fast and high a coherence as a random
network with the same connection probability. In the case
that only a part of neurons are subjected to the stimulus, the
STDP network shows much faster and stronger synchroniza-
tion than random networks, as in Fig. 4. It should also be
noted that, after a period of relaxation, the coherence de-
creases and saturates, exhibiting the adaptation often found
in the nervous system.

In the case of conventional Hebbian networks, all the syn-
aptic connections between the neurons under the common
external stimulus increase, whereas the others are weakened.
However, in our STDP network, the neurons under common
stimulus need not be fully connected with only a small por-
tion of the strengthened synapses forming a sparse, small-
world, scale-free network, which is dynamically more effec-
tive and structurally more robust. This neural mechanism
may be utilized in modeling and controlling the neural net-
work more efficiently. This work provides insights useful to
the studies of the formation of functional complex networks
in the brain due to the activity dependent synaptic plasticity
and the developmental process of neural circuits, as in the
learning and memory models.
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